Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Virol ; 95(3): e28655, 2023 03.
Article in English | MEDLINE | ID: covidwho-2260026

ABSTRACT

As the key component of host innate antiviral immunity, type I interferons (IFN-Is) exert multiple antiviral effects by inducing hundreds of IFN-stimulated genes. However, the precise mechanism involved in host sensing of IFN-I signaling priming is particularly complex and remains incompletely resolved. This research identified F-box protein 11 (FBXO11), a component of the E3-ubiquitin ligase SKP/Cullin/F-box complex, acted as an important regulator of IFN-I signaling priming and antiviral process against several RNA/DNA viruses. FBXO11 functioned as an essential enhancer of IFN-I signaling by promoting the phosphorylation of TBK1 and IRF3. Mechanistically, FBXO11 facilitated the assembly of TRAF3-TBK1-IRF3 complex by mediating the K63 ubiquitination of TRAF3 in a NEDD8-dependent manner to amplify the activation of IFN-I signaling. Consistently, the NEDD8-activating enzyme inhibitor MLN4921 could act as a blocker for FBXO11-TRAF3-IFN-I axis of signaling. More significantly, examination of clinical samples of chronic hepatitis B virus (HBV) infection and public transcriptome database of severe acute respiratory syndrome coronavirus-2-, HBV-, and hepatitis C virus-infected human samples revealed that FBXO11 expression was positively correlated with the stage of disease course. Taken together, these findings suggest that FBXO11 is an amplifier of antiviral immune responses and might serve as a potential therapeutic target for a number of different viral diseases.


Subject(s)
COVID-19 , F-Box Proteins , Hepatitis B, Chronic , Interferon Type I , Humans , Antiviral Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , TNF Receptor-Associated Factor 3/genetics , Immunity, Innate , Interferon Type I/metabolism , Interferon Regulatory Factor-3/genetics , Protein-Arginine N-Methyltransferases/metabolism
2.
Vet Microbiol ; 273: 109544, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2028561

ABSTRACT

Autophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells. On the contrary, ATG4B knockdown facilitated PEDV replication. Moreover, ATG4B was observed to hinder PEDV replication by activating type-I IFN signaling. Further detailed analysis revealed that the ATG4B protein targeted and upregulated the TRAF3 protein to induce IFN expression via the TRAF3-pTBK1-pIRF3 pathway. The above data revealed a novel mechanism underlying the ATG4B-mediated viral restriction, thereby providing novel possibilities for preventing and controlling PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/genetics , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/genetics , Vero Cells , Virus Replication
3.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1831591

ABSTRACT

Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-ß antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-ß, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-ß expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Antiviral Agents , Interferon-beta/genetics , Interferon-beta/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Swine , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Virus Replication
4.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1122600

ABSTRACT

The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.


Subject(s)
Host-Pathogen Interactions/genetics , Machine Learning , Protein Interaction Mapping/methods , Receptors, Virus/metabolism , Viral Proteins/metabolism , Viruses/metabolism , Amino Acid Sequence , Antiviral Agents/therapeutic use , CD40 Antigens/genetics , CD40 Antigens/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression , Humans , Protein Binding , Receptors, Virus/genetics , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Viral Proteins/genetics , Virus Diseases/drug therapy , Virus Diseases/virology , Viruses/drug effects , Viruses/genetics
5.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Article in English | MEDLINE | ID: covidwho-1015956

ABSTRACT

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Subject(s)
Antiviral Agents/metabolism , Immunity, Innate/immunology , Interferon Type I/metabolism , Proteins/metabolism , Rhabdoviridae Infections/immunology , Secretory Pathway , Vesiculovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , HeLa Cells , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Vesiculovirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL